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ABSTRACT

We present FlipTest, a black-box technique for uncovering discrimi-
nation in classifiers. FlipTest is motivated by the intuitive question:
had an individual been of a different protected status, would the model

have treated them differently? Rather than relying on causal infor-
mation to answer this question, FlipTest leverages optimal transport
to match individuals in different protected groups, creating sim-
ilar pairs of in-distribution samples. We show how to use these
instances to detect discrimination by constructing a flipset: the
set of individuals whose classifier output changes post-translation,
which corresponds to the set of people who may be harmed because
of their group membership. To shed light on why the model treats a
given subgroup differently, FlipTest produces a transparency report:
a ranking of features that are most associated with the model’s be-
havior on the flipset. Evaluating the approach on three case studies,
we show that this provides a computationally inexpensive way to
identify subgroups that may be harmed by model discrimination,
including in cases where the model satisfies group fairness criteria.
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1 INTRODUCTION

With the recent introduction of machine learning in sensitive ap-
plications like predictive policing [17] and child welfare [40], the
question of whether these algorithms can lead to unfair outcomes
has gained widespread attention. These concerns are not merely
hypothetical. Racial bias in the COMPAS recidivism prediction
model [4] and gender bias in Amazon’s hiring model [11] suggest
that discriminatory models can have wide-reaching harmful effects.
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A growing set of strategies have emerged for testing and detec-
tion of such discriminatory behaviors. A common approach that ap-
plies to group fairness criteria such as demographic parity [18] and
equalized odds [22] is to measure aggregate statistics of the model’s
behavior on a targeted population. For example, this approach was
taken with the COMPAS system for recidivism prediction by mea-
suring false positive and negative rates across Caucasian and minor-
ity populations [17], and is supported by IBM’s AIF360 toolkit for
assessing model fairness [7]. However, there are several potential
issues with this approach [9, 27, 44], among which is that models
can potentially łpassž such audits while still behaving unfairly to-
wards individuals, or even targeted subgroups [31]. Additionally,
while aggregate statistics can reveal broad patterns of potential dis-
crimination, they do not reveal additional information that sheds
light on the underlying discriminatory mechanism at play, which is
crucial when assessing whether the behavior is truly problematic.

Recent work [2, 19] instead searches for discrimination at the
individual level, testing whether changes in the protected demo-
graphic status of an individual can cause changes in model outcome.
However, to change the protected demographic status of an individ-
ual, these methods simply flip the value of the protected attribute
(e.g., race or gender). While this can ensure that the model does not
directly use the protected attribute to discriminate, it still allows
the model to disproportionately harm a protected group by using
features that are correlated with the protected attribute.

The framework of counterfactual fairness by Kusner et al. [29]
takes these correlations into account by assuming a causal gener-
ative model for the relevant data. This approach has the advantage
that instances of discrimination against individuals or small sub-
groups cannot łfly under the radarž, and the causal generative
model may lead to a more nuanced and granular understanding
of how the model discriminates. However, the reliance on detailed
causal information creates practical issues that may limit its appli-
cability as well. Namely, it may not be feasible to assume access to a
generative causal model in many applications, and if an inaccurate
model is used, then the conclusions may be misleading. Moreover,
the legal frameworks governing discrimination in many countries
(e.g., disparate impact in the US [37] and indirect discrimination in
the UK [32]) do not require a causal relationship with the protected
status, so tests based on counterfactual fairness may fail to identify
instances of legally actionable discrimination.

In this paper we present FlipTest, a black-box, efficient, and inter-

pretable fairness testing approach that is motivated by the following
intuitive question: had an individual been of a different protected

status, would the model have treated them differently? In contrast
to aggregate testing methods, FlipTest reasons about the model’s
behavior on individuals and subgroups to look for evidence of dis-
crimination, and can thus uncover forms of discrimination to which
group fairness measures are blind. However, unlike counterfactual
fairness, FlipTest does not rely on causal information, and instead
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uses an optimal transport mapping [41] to answer the question
above. Consequently, the goal of our test is not to demonstrate a
causal link between the protected attribute and the model’s output,
but to showcase salient patterns in a model’s behavior that may be
indicative of discrimination. Importantly, this means that FlipTest
is sensitive to both statistical and causal discrimination, and does
not require strong causal assumptions about the data-generating
process. Further, we show that the information computed in this
process can provide insight into not just whether a model discrim-
inates, but how it does and who is likely to be affected.

Problem setting.We consider a setting where a machine learning
system is being audited for discriminatory behaviors, either by
well-intentioned stakeholders who may have been involved in the
model’s construction, or by concerned practitioners outside of the
development process. Ideally, the auditors include a domain expert
who is familiar with the application and the subject population who
will come into contact with the algorithm. We assume that these
individuals and those responsible for training the model are not
intentionally trying to evade a finding of discrimination.

Optimal transport. FlipTest uses an optimal transport map [41] to
construct instances that may reveal whether a model’s behavior is
sensitive to changes in protected status. An optimal transport map
transforms one probability distribution into another, while minimiz-
ing a given cost defined over their respective supports. For example,
we might use an optimal transport map from the distribution of
men to women in order to obtain a (female, male) pair of inputs
with which to query the model. If the model’s output differs for
these two people, then it may be evidence that the model discrim-
inates on the basis of gender. Using optimal transport to compare
protected group outcomes is advantageous because it translates
exactly from one distribution to another, generating inputs that
are in the distribution of its image. When the image of an optimal
map corresponds to a distribution that the model was trained on,
the results will reflect characteristic model behavior that can be
expected when the model is deployed. This is not necessarily true
for other methods of generating alternate inputs on which to com-
pare model outcomes, e.g. input influence measures [12]. Further,
the mapping does not rely on causal information, and can reveal
associative forms of discrimination that causal tests cannot while
requiring fewer assumptions about that data.

A key challenge with this approach lies in constructing the map-
ping, which can be computationally demanding with large, high-
dimensional datasets. In recent years there have been notable ad-
vances in methods for efficiently approximating optimal transport
maps [34], and FlipTest’s efficacy can benefit from ongoing work on
this problem. In this paper, we present an approximation method
based on generative adversarial networks (GANs) [20] (Section 3.1),
and validate it by showing that it is feasible to construct good, stable
approximations of known precise mappings (Section 5.1).

Finding evidence of discrimination. Beyond examining model
behavior on individual pairs, we show how the information pro-
vided by the optimal transport map can be systematically evaluated
for evidence of discrimination. In particular, we assume that the clas-
sifier in question produces binary outputs, one of which is seen as
a favorable outcome and the other as unfavorable. We consider two

sets of individuals under the optimal map: those whose prediction
changes from favorable to unfavorable, and vice versa. We call these
flipsets, and look to the relative size of each flipset for signs of poten-
tial discrimination; for example, we show how flipsets relate to well-
known fairness criteria like demographic parity and equalized odds
(Section 4). In addition, large flipsets can indicate subgroup-level
discrimination that is not well described by these group fairness
criteria (Section 5.3). By comparing the distribution of the flipsets
to the distribution of the overall population, it is often possible to
identify specific subgroups that the model discriminates against.

To gain insight into how the model discriminates, we construct a
transparency report that summarizes the most salient statistical dif-
ferences in the features between the flipset individuals and their im-
ages under the optimal transport mapping (Section 4.2). Intuitively,
the transparency report can serve as an overview of what features
the model may be using to discriminate between populations.

However, it is not guaranteed that a person in the flipset is the
victim of discrimination. For example, an inter-group disparity in
the model’s output may be permitted if there is a sufficient justifi-
cation such as a łbusiness necessityž [6, ğII.B]. Therefore, we treat
the flipset analysis and transparency report as a starting point for
further investigation about the potential unfairness of the model,
which can be followed up with more expensive and conclusive
analyses that look at whitebox model information [12, 13].

Experiments.We empirically evaluate FlipTest on four different
datasets (Section 5), demonstrating the testing workflow that we
envision for it: Chicago Strategic Subject List [10], an illustrative
dataset from Lipton et al. [31], the law school success dataset used
to illustrate counterfactual fairness [29], and a synthetic dataset
we construct to demonstrate differences from prior work. Our re-
suls show that FlipTest provides clear, interpretable evidence of
discrimination in a range of settings, along with concrete diag-
nostic information that is useful when reasoning about the model
behaviors that are responsible for the discrimination.

We compare FlipTest against two prior approaches: counterfac-
tual fairness [29] and FairTest [38]. For counterfactual fairness, we
examine the dataset used by the authors to evaluate the approach,
and compare FlipTest’s optimal transport-based results against
those obtained by making comparable interventions on the gener-
ative causal model given by Kusner et al. [29, Section 5]. We find
that the two lead to similar conclusions about the model’s tendency
to discriminate, despite the fact that FlipTest makes substantially
fewer assumptions about the data. For FairTest, an approach based
on statistical hypothesis testing of subgroup discrimination, we
show that FlipTest can complement FairTest by detecting instances
that FairTest misses.

Summary. To summarize, our main contributions are: (1) FlipTest,
a black-box, efficient testing approach for detecting discrimination
in classifiers; (2) the novel use of optimal transport for fairness
testing; and (3) the application of FlipTest to two case studies in-
volving predictive policing (Section 5.2) and hiring (Section 5.3), as
well as comparisons to prior fairness testing methods (Sections 5.4,
5.5), which demonstrate that our approach can identify concrete
examples of unfair model behavior in cases where prior testing
methods do not.
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2 AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate the main concepts behind FlipTest with
a running example, which uses a synthetic dataset created by Lipton
et al. [31, ğ4.1]. This dataset consists of two features, hair length and
work experience, and supposes a binary classifier that uses these
features to decide whether a given person should be hired.We inves-
tigate possible gender bias in thismodel, askingwhether themodel’s
output would have been different had a given person been of a dif-
ferent gender. However, it is not sufficient to simply flip the gender
attribute due to correlations in the data that the model may be use as
a proxy for gender: in this data, gender is correlated with hair length
and work experience. Additionally, flipping the gender attribute is
not an option because the model does not directly use this attribute.

We instead map the set of women in the data to their male cor-
respondents, and analyze cases where the model treats women
differently from the men that they are mapped to. This raises the
question of which specific man a given woman should be mapped to,
for which we appeal to the intuition that a difference in treatment
between two people is not by itself strong evidence of discrimina-
tion unless they are similar enough that the disparity cannot be
justified. For example, when a man with 20 years of relevant expe-
rience is hired over a woman with no experience, this difference
would likely be attributed to work experience rather than gender
discrimination. This motivates our use of an optimal transport map-

ping [41], which minimizes the sum of the distances between a
woman and the man that she is mapped to (her counterpart), where
the distance quantifies how different a pair of people are.

We must now specify a distance function (or cost function) to
operationalize the optimal transport mapping. Although there are
no easy answers to the question of which people are similar for
the purpose of establishing discrimination, the goal of this paper
is to demonstrate a new technique for finding evidence of possi-
ble discrimination rather than to present a conclusive definition of
discrimination.We find that the square of the L1 distance leads to re-
liable results (Section 5), so we use it in this paper, but our approach
is compatible with any cost function deemed suitable for the setting.

We then analyze the optimal transport mapping, which is de-
picted in the top plot of Figure 1. The analysis is through the flipset
F (h,G), which consists of all women whose outcomes were dif-
ferent from their counterparts’. We partition the flipset into the
positive flipset F+(h,G), which contains the hired women whose
counterparts were not, and the negative flipset F−(h,G), which is
the set of rejected women whose counterparts were hired. Thus, in
some sense the women in F+(h,G) were advantaged due to their
gender, and those in F−(h,G) disadvantaged. Although this is not
sufficient to establish that gender caused the difference in the way
that some causal tests [12, 29] can, FlipTest has the advantage that
it queries the model on in-distribution points only, so its response
to these inputs is likely to be reliable.

We begin by examining the size of the positive and negative
flipsets. Suppose that the model does not satisfy demographic par-
ity, hiring disproportionately more men than women. Then, the
flipsets will have different sizes, with the negative flipset larger
than the positive. Therefore, a large difference in the sizes of the
flipsets is evidence of possibly discriminatory behavior in the model.
However, such differences may also be based on a justifiable reason,
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Figure 1: (Top) Optimal transport mapping from women

to men in the Lipton et al. [31] synthetic dataset. This is

an approximation generated by a GAN, as described in

Section 3.1. (Bottom) Flipsets as defined by the model with

the given decision boundary.

such as when the job in question has requirements that are more
likely to be satisfied by a particular gender.

Alternatively, it could be that the positive and negative flipsets
have the same size. If this is the case, i.e., the net flipset size is zero,
then the model satisfies demographic parity. However, if the sizes
of the individual flipsets are still large, then there may be discrim-
ination at the subgroup level. To investigate which subgroups may
be discriminated against (or unfairly advantaged), we can compare
the distributions of the flipsets to that of the entire population. We
plot the marginal distributions in Figure 5, and the results show
that the advantaged (F+(h,G)) women tend to have much longer
hair than the disadvantaged (F−(h,G)) women, suggesting that the
model may be discriminating against shorter-haired women.

Finally, we can produce a transparency report to gain more in-
formation about why the model may behave in this way. The trans-
parency report describes how the members of the flipsets are differ-
ent from their counterparts, shedding light on which features may
have contributed to themodel’s decision to classify the counterparts
differently. As we can see in the bottom plot of Figure 1, the women
in the negative flipset have much less work experience than their
counterparts, and this suggests that they were not hired because of
inadequate work experience. Although this method is not foolproof
because work experience could have been a correlate of another
feature that the model actually uses, it points to a specific aspect of
model behavior for further investigation with tools such as QII [12]
that can ascertain which feature is most responsible for the model’s
behavior. If it turns out that work experience causes the difference
in the hiring decisionsÐand in our example it doesÐa practitioner
can consult a domain expert to decide whether the use of work
experience is justified. In many cases it would be justified, but it
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may not if the disparity in work experience is due to discrimination.
In the rest of this paper, we solve the main technical challenges

behind FlipTest and experimentally verify that it reaches the correct
conclusions in many settings. We formally describe the optimal
transport mapping in Section 3, and we show how to use a GAN
to efficiently approximate an optimal transport mapping in a way
that generalizes to unseen data. While the example in this section
is based on demographic parity, we can split the dataset by the true
label to test for a more individualized notion of equalized odds as
well. Our experiments in Sections 5.2 and 5.3 show that FlipTest
can identify possible subgroup discrimination in cases where the
relevant group fairness objective (demographic parity or equalized
odds) is met and in cases where it is not. Finally, in Sections 5.4 and
5.5 we compare FlipTest to prior similar methods.

3 OPTIMAL TRANSPORT MAPPING

In this section, we describe the optimal transport problem in more
detail, and show in Section 3.1 how to solve a GAN objective to
approximate the optimal transport mapping in a way that gener-
alizes to unseen data points. In Section 3.2 we compare this GAN
approximation to the exact optimal transport mapping and another
approximation method by Seguy et al. [36], finding that the GAN
tends to give more stable mappings. Although this GAN approxima-
tion is not the only way to operationalize FlipTest, we use the GAN
approximation throughout the rest of this paper because it appeared
to give more reliable results than the alternatives we considered.

We first introduce the notation. Let S and S′ be two distri-
butions defined over the feature space X. In practice, we do not
know these distributions, so we usually deal with observations
of points drawn from these distributions instead. We will use the
sets S = {x1, . . . ,xn } and S ′ = {x ′

1, . . . ,x
′
n } to denote the ob-

served points, where n = |S | = |S ′ |. Note that here we assume
that |S | = |S ′ | for ease of exposition, as this assumption allows the
resulting exact optimal transport mapping to be deterministic. The
general case where |S | , |S ′ | can be handled through the use of
randomized optimal transport mappings, and our approximation
methods do not require that the two sets have equal size.

Let c : X ×X → [0,∞) be a cost function that describes the cost
of moving between two points in the feature space X. Intuitively,
an optimal transport mapping from S to S ′ is a minimum-cost way
to move the points in S such that the end result is S ′. Thus, if
more similar pairs of points have a lower cost, an optimal transport
mapping describes how to match points in S with their similar
counterparts in S ′. Formally, an optimal transport mapping can be
defined as a bijection f : S → S ′ that minimizes the expected cost
E[c(x, f (x))] = 1

n

∑
n

i=1 c(xi , f (xi )).

3.1 Approximation via GANs

While the exact optimal transport mapping between S and S ′ can be
solved through a linear program or the Hungarian algorithm [28],
these methods do not scale well to large n. In addition, the exact
mapping, as well as some approximations thereof [3, 35], is not
defined for points outside of S . Therefore, we instead propose a gen-
erative adversarial network (GAN) [20] to approximate an optimal
transport mapping in a way that avoids both of these issues.
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S ′. Note the logarithmic vertical scale. The horizontal axis

represents the number of dimensions in the feature space

X, and each plotted point represents the variance of one of

the features. More details are given in Section 3.2.

Because we want to use the generator G as an optimal trans-
port mapping, we assume that its inputs draw randomness from
S. For concreteness, we base our construction on the Wasserstein
GAN [5], and note that our primary result (Proposition 1 below) can
be extended to other types of GANs aswell.When training a conven-
tional Wasserstein GAN with the sets of observed points S and S ′,
the generator’s loss function is (1/n)

∑
x ∈S D(G(x)) for discrimina-

tor D, and the discriminator’s loss function is (1/n)
∑
x ′∈S ′ D(x

′) −

(1/n)
∑
x ∈S D(G(x)). For the purpose of finding an optimal trans-

port mapping, we modify the generator’s loss function to take into
account the cost of moving from a point in S to a point in S ′:

LG =
1
n

∑
x ∈S D(G(x)) +

λ

n

∑
x ∈S c(x,G(x)) (1)

Our modified generator has two objectives, with the parameter λ
controlling their relative importance: generating the correct output
distributionS′, and minimizing the expected cost c(x,G(x)). Propo-
sition 1 formalizes the intuition that these objectives are also those
of an optimal transport mapping. The proof is given in Appendix A
of the supplementary material.

Proposition 1. Suppose that G∗ is a minimizer of LG among all

G such that G(S) = S ′. If λ > 0, G∗ is an exact optimal transport

mapping from S to S ′.

Although the generator G will not satisfy G(S) = S ′ in practice,
Proposition 1 motivates the use of this generator to approximate an
optimal transport mapping. Our experimental results (Section 3.2)
show that the approximate GAN mapping is more stable than the
exact mapping, which is not very stable and changes drastically
depending on which sets S and S ′ were drawn from S and S′.

3.2 Stability

Here, we compare the behavior of the exact optimal transport map-
ping to those of approximate mappings. This is not intended to
be a comprehensive evaluation of all approximation methods, but
rather an argument for the use of approximations over the exact
mapping for our purpose. We note that FlipTest is compatible with
any optimal transport method.
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To measure stability, we fix a point x ∈ S and then draw multiple
distinct samples of the other n − 1 points from S and n points from
S′. Thus, we have different sampled sets S and S ′ each time, and
we observe the variance of the point f (x) over the random draws.

Aswith all experiments in this paper, we used the square of the L1
distance as the cost function. The exact optimal transport mapping
was computed as a linear program with Gurobi [21] implemented
in Python 3, and for the GAN approximation (Section 3.1), we
trained a Wasserstein GAN [5] using Keras [8] with the TensorFlow
backend [1]. For these experiments, we mapped the standard mul-
tivariate normal distribution to itself. Because the size of the linear
program for the exact optimal transport mapping increases at least
quadratically with the size n of the dataset, we used n = 500. Each
experiment was repeated with 100 random draws of the dataset.

In the first set of experiments, we set x to be the one vector
and observed the mean of f (x). Since we map a distribution to
itself, f should roughly be the identity function, and the mean
of f (x) should be similar to x . While this was the case for the
GAN approximation, the exact mapping displayed a significant
łregression-to-the-meanž effect that increased with the number of
dimensions in the feature space.

In the second set of experiments, we set x to the zero vector and
noted the variance of f (x) under all three types of mappings. The
result is plotted in Figure 2, showing that the GAN approximation is
much more stable than the exact mapping and somewhat more sta-
ble than that obtained by the method described by Seguy et al. [36].

The differences in both mean and variance persisted when we
changed the data distribution by making the features correlated
with each other. These differences can be explained by the fact that
the exact mapping tends to overfit to the observed points, since
it has to map every point to another observed point. As a result,
approximate mappings are better suited for evaluating the fairness
of a model that is trained to generalize. Since the GAN mapping
appears to be more stable than that of Seguy et al., for the rest
of the experiments we will exclusively use GANs as the optimal
transport method in FlipTest. At the time of writing, we have not
been able to evaluate the very recent GAN-based optimal transport
approximation method by Leygonie et al. [30] for use in FlipTest,
but any advantage of their method over the construction given here
would translate to an improvement for FlipTest’s results.

4 FLIPSETS AND TRANSPARENCY REPORTS

We leverage the optimal transport mapping to gather two main
pieces of information from a model: who may experience discrim-
ination, and which features may be associated with this effect. In
Section 4.1, we describe flipsets, which we use to answer the first
question, and in Section 4.2 we show how to use them to construct
transparency reports, which help answer the second question.

4.1 Flipsets

We begin by introducing the flipset (Definition 1), which is the set
of points whose image under a transport mapping is assigned a
different label by a binary classifier.

Definition 1 (Flipset). Let h : X → {0, 1} be a classifier and

G : S → S′ be an optimal transport mapping (or an approximation).

The flipset F (h,G) is the set of points in S whose mapping into S′

under G changes classification.

F (h,G) = {x ∈ S | h(x) , h(G(x))} (2)

The positive and negative partitions of F (h,G) are denoted by F+(h,G)
and F−(h,G).

F+(h,G) = {x ∈ S | h(x) > h(G(x))}

F−(h,G) = {x ∈ S | h(x) < h(G(x))}

In our experiments,S andS′ will correspond to two groups with
differing values for a protected attribute, and h will be a classifier
with the potential to be unfair. For example, suppose that S and S′

respectively correspond to female and male job applicants and that
h is used to determine which applicants should proceed to further
rounds of interview. Then F+(h,G) is the set of female applicants
who proceed to the next round but whose male counterparts under
G do not, and F−(h,G) is the women who do not proceed but whose
male counterparts do.

Note that we can also create flipsets based on a mapping G ′ :
S′ → S in the opposite direction. Then, in our example F+(h,G ′) is
the set of male applicants who proceed to the next round but whose
female counterparts under G ′ do not, and F−(h,G ′) is the men
who do not proceed but whose female counterparts do. If G ′ and
G compose to the identity function, these flipsets would have the
same size as F−(h,G) and F+(h,G), respectively, and we can test for
this property as a sanity check of our GAN mappings. We expand
this discussion in Appendix D of the supplementary material.

If the distributions S and S′ are equal, we would expectG to be
the identity function, leading to empty positive and negative flipsets.
This corresponds to the setting where the input features are inde-
pendent of the protected attribute, thereby ensuring that the model
cannot discriminate on the basis of the protected attribute. Propo-
sition 2 shows that demographic parity only provides a weaker
guarantee of zero net flipset size. Thus, if the positive and negative
flipsets are nonempty but have equal size, some individuals may be
experiencing discrimination even though demographic parity holds.
In this proposition, we use the exact optimal transport mapping
to avoid any noise introduced by the GAN approximation, and the
proof is provided in Appendix A of the supplementary material.

Proposition 2. Let h be a binary classifier and G : S → S ′, with

|S | = |S ′ |, be the exact optimal transport mapping. Then, |F+(h,G)| =

|F−(h,G)| if and only if the model satisfies demographic parity on

the observed points, i.e.,

|{x ∈ S | h(x) = 1}| = |{x ′ ∈ S ′ | h(x ′) = 1}|.

If we instead consider the distributions S|(y = 1) and S′ |(y = 1),
conditioned by the true label y, we can prove a similar result about
equality of opportunity [22], and if we consider S|(y = 0) and
S′ |(y = 0) as well, we can extend the result to equalized odds [22].

When h is biased, the flipsets can provide several additional
forms useful information about the model’s behavior. First, the
relative sizes of F+(h,G) and F−(h,G) can serve as a simple test of
group fairness. Second, the absolute sizes of F+(h,G) and F−(h,G),
if they are large, can indicate possible discrimination at the sub-
group level. Third, if the distributions of the flipsets are different
from S, we gain information about which subgroup may be dis-
criminated against. We illustrate these insights in greater detail in
the case studies described in Section 5.
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4.2 Transparency Reports

A transparency report (Definition 2) identifies features that change
the most, and most consistently, under G between members of a
given flipset (F+(h,G) or F−(h,G)). These features are likely can-
didates for the underlying reasons for the observed discrimination,
and can be examined further using more costly causal influence
methods [12] to make a final determination.

Definition 2 (Transparency Report). Let h : X → {0, 1} be
a classifier,G : S → S′ be an optimal transport mapping (or approx-

imation), and F (h,G) be the corresponding flipset. If X ⊆ Rd , we can

compute the following vectors, each of whose coordinate corresponds

to a feature in X:

1
|F⋆(h,G) |

∑
x ∈F⋆(h,G) x −G(x), and

1
|F⋆(h,G) |

∑
x ∈F⋆(h,G) sign(x −G(x))

Here,⋆ ∈ {+,−}. Together, these vectors define a transparency report,
which consists of two rankings of the features in X, each sorted by

the absolute value of each coordinate.

Intuitively, the features ranked highest by the transparency re-
port are those that are most associated with the model’s differences
in behavior on the flipset. As we show in Sections 5.2 and 5.3, these
often align closely in practice with the features used by the model
to discriminate.

5 EXPERIMENTS

We now apply FlipTest to real and synthetic datasets, illustrating
its use in finding discrimination in models. We begin by providing
additional validation of the GAN optimal transport approxima-
tion (Section 5.1), and then move on to two case studies: a biased
predictive policing model (Section 5.2), a well as a hiring model
(Section 5.3) that contains a subtle form of subgroup discrimination.
In Sections 5.4 and 5.5, we compare FlipTest to prior fairness testing
methods, namely counterfactual fairness-based auditing [29] and
FairTest [38]. In all of the experiments, we trained GANs using the
configuration described in Section 3.

5.1 GAN Validation

In general, the GAN does not converge to the target distribution.
Moreover, limitations in the amount of data available to train the
GANwill reduce the accuracy of the approximation. To evaluate the
effect of these factors on flipsets, we trained a GAN with samples
from two identical distributions. In this setting, as the sample size
approaches infinity, the exact optimal transport mapping will lead
to empty flipsets. Therefore, the results of this experiment would
indicate how many flips we can expect due to the noise in the GAN
approximation and the finite sample size.

Because we map a distribution to itself, in order to simulate
a more typical application of GAN training, we added additional
random features that are dependent on the protected attribute. We
drew 10,000 points drawn from each distribution, and to amplify
any errors in the GAN mapping, we trained a very complex model
by fitting an SVM with RBF kernel to random labels. Further details
on the experimental procedure are given in Appendix B of the sup-
plementary material. In the end, the flipsets were small despite the
above steps that were intended to increase the size of the flipsets: we

Table 1: Validations for GANs included in the experiments

section. KS refers to the KolmogorovśSmirnov two-sample

test statistic. MSE Diff refers to the difference, between real

and generated data, of the mean squared error of a linear re-

gression model trained on the real data to predict a feature

from the rest. For KS and MSE, we ran 10 trials; the mean

is given first, with standard deviation in parentheses. Dist:

OT, GAN refers to the average of the squared L1 distance

between a data point x and its counterpart G(x) under an

exact optimal transport mapping (OT) or an approximated

GAN mapping (GAN).

Experiment Features KS (std) MSE Diff (std) Dist: OT, GAN

SSL:
Dem Parity

Age 0.054 (0.001) 0.070 (0.048)
2.04, 1.64Gang Aff 0.018 (0.006) 0.094 (0.034)

Narc Arr 0.025 (0.002) 0.298 (0.058)

SSL:
Eq Odds (Neg)

Age 0.019 (0.021) 0.019 (0.057)
1.52, 1.42Gang Aff 0.007 (0.004) −0.009 (0.053)

Narc Arr 0.019 (0.007) 0.094 (0.078)
Lipton:
Dem Parity

Work Exp 0.072 (0.014) 0.150 (0.204)
2.19, 2.09

Hair Len 0.074 (0.043) 0.141 (0.114)

Law School
LSAT 0.057 (0.012) 3.757 (0.462)

10.99, 11.10
GPA 0.110 (0.027) −0.040 (0.005)

observed |F+(h,G)| = 167 and |F−(h,G)| = 148, each accounting
for approximately 3% of the data. This serves a benchmark for com-
parisonwith themodels in the following sections, which have larger
and more unbalanced flipsets. This difference is striking given that
we would expect larger flipsets from the complicated SVM classifier
here than the simpler models in the later experiments.

To further validate our GAN mappings, we computed the exact
optimal transport mapping f on a 2,000-member subset of the data
and computed the average squared L1 distance between x and f (x).
Then, we compared this quantity to the average squared L1 distance
between x andG(x) for the GAN generatorG . If the GAN mapping
closely matches the optimal transport mapping, we would expect
these numbers to be similar.

We also examined the fit of the GAN-based approximation on
the datasets used in the evaluation using the KolmogorovśSmirnov
(KS) two-sample test on the marginal distributions for each feature
between the real target data S ′ and the generated dataG(S). The out-
put of this test corresponds to the largest difference in the empirical
distribution functions of the two samples, with a small KS-statistic
corresponding to the case where the two distributions are similar.
In Table 1, we only report the KS-statistic and its variance, and not
the associated p-value, since we do not require or expect the two
samples to be from the exact same distribution. We instead use the
statistic as a metric to judge how far apart the distributions are,
aiming for them to be as close as possible.

Since similarity tests on the marginals of a distribution do not
account for correlation between features, we further validate the
output by training a linear regression model to predict each feature
from the others (e.g., in the SSL dataset, age from the other seven
features). We train these regression models on the real target data
S ′, and compare the accuracies of these models on S ′ to those on the
generated data G(S). If the mean squared error is similar between
predicting all features from the true data and the generated data,
we take this as evidence that the GAN has captured correlation
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for people in S and Geometric(1/2)−1 for people in S′. In addition,
we assume a simple model, which classifies a person as low risk if
the number of prior arrests is zero, high risk if it is two or more, and
either low risk or high risk uniformly at random if there is exactly
one prior arrest. Because the members of S tend to have more prior
arrests than those in S′, this model classifies disproportionately
higher number of people in S as high risk.

We let S and S ′ be sets of 10,000 points drawn from S and S′,
respectively, and ran FairTest and FlipTest on these sets. FairTest cor-
rectly identified possible discrimination at the group level, reporting
a confidence interval of [0.2452, 0.2941] for the correlation between
the model’s output and the protected attribute. However, the cor-
relation decreased in all subgroups that FairTest subsequently con-
sidered. This is because subgroups in FairTest are defined by the
values of the input features. Thus, FairTest compares a subgroup
of S to a subgroup of S ′ that has similar numbers of arrests.

On the other hand, FlipTest recognizes that the distributions of
the number of arrests is different, and adjusts the comparisons
accordingly. For example, the set of people with 1 arrest in S

is compared to the set with 2ś4 arrests in S ′. As a result, the
flipsets are very large and unbalanced, with |F+(h,G)| = 2572
and |F−(h,G)| = 0. In addition, the transparency report explains
a reason for this difference, showing that 100% of the people in
F+(h,G) had more arrests than their statistical counterparts in S′,
with an average of 1.44 more arrests.

We see this phenomenon on real data as well. On the SSL data
(Section 5.2), FairTest notes an overall bias against the entire black
population, but does not report that the discrimination is based on
narcotics arrest since the feature itself is biased, with higher levels
for black subjects than white subjects. The full results are given in
Figure 4 in the supplementary material.

Thus, the choice of the appropriate fairness test may depend
on the setting. If the number of prior arrests is a strong indicator
for recidivism risk, then it makes sense to compare subgroups of
people with similar numbers of arrests. On the other hand, if the
model had used a feature that is completely unrelated to crime, it
would be harder to justify comparing people who are similar with
respect to that feature. Our experiments in this section show that
FairTest is better suited for settings where the input features can
justify potential differences in the model’s output.

6 RELATEDWORK

Counterfactual Fairness Testing. Counterfactual fairness [29]
compares the model’s behavior on a real input and a counterfactual,
causally generated input. Similarly, Datta et al. [12] perform causal
interventions on input features to study which features are influen-
tial in changing in the output of the model, Wachter et al. [42] gener-
ate simple L1-nearest counterfactuals as a form of explanations for
model outputs, and Ustun et al. [39] develop a method that outlines
what actions individuals can take to change their classification out-
come in linearmodels. However, thesemethods, like those discussed
in the introduction [2, 19], generate potentially unrealistic, out-of-
distribution points, which can jeopardize their conclusions. By con-
trast, the points that we generate conform to the data distribution.

Optimal Transport.Others have proposed using the optimal trans-
port map in the context of fairness, but to the best of our knowledge,

it has not yet been used as a fairness testing mechanism. Del Barrio
et al. [14] use the optimal transport mapping to extend a previous
method [18] of data pre-processing, which obfuscates protected
attribute information, to the multivariate setting. Concurrent work
from Yang et al. [45] also develop a method of approximating an
(unbalanced) optimal transport mapping using GANs. Their for-
mulation is closely related to ours, but they do not consider its ap-
plication to fairness testing. Altschuler et al. [3] and Quanrud [35]
present efficient methods for approximating the optimal transport
mapping, but the resulting mappings are not defined for previously
unseen data points. By contrast, the mappings produced by Leygo-
nie et al. [30], Perrot et al. [33], and Seguy et al. [36] do generalize
to unseen points, making them suitable for use with FlipTest.

Individual Fairness. Individual fairness criteria [15, 16, 24, 48]
bind guarantees about the fairness of a model’s behavior to every
individual, as opposed to an aggregated statistic. Dwork et al. [16]
note that, in some cases, the model must essentially be a constant
function to satisfy individual fairness and group fairness at the
same time. They propose an alternative that applies an optimal
transport mapping to one of the groups, obtaining a transformed
dataset on which they solve individual fairness. FlipTest is mo-
tivated by this approach, but we specifically look for potentially
discriminatory differences between pairs of individuals that belong
to different groups, and use optimal transport to construct pairs of
individuals that exemplify these differences.

Subgroup Fairness. One application of this work is uncovering
subgroup unfairness [23, 26], i.e., identifying subgroups that are pos-
sibly harmed as a result of their group membership. FairTest [38]
uses a decision tree to find subgroups with high discriminatory
association, while taking care to ensure that the association is sta-
tistically significant. However, as we show in Section 5.5, FairTest
does not handle the case where the input feature itself is biased.
Zhang et al. [49] also find a computationally faster way to search
the exponentially large number of subgroups, but their method also
suffers from the same issue that FairTest does. Kearns et al. [25]
prove that checking for subgroup fairness is equivalent to weak
agnostic learning, which is computationally hard in the worst case.
FlipTest differs from these works in that we do not require the
subgroups of interest to be specified before the fairness testing.

7 CONCLUSION

FlipTest is a low-cost fairness testing framework that is sensitive
to discrimination beyond group fairness metrics, is proficient at
displaying unfair treatment in models with biased data, and can be
used to as a first step towards detecting amodel’s method of discrim-
ination. As future work, extending the framework beyond binary
classifiers, which are themost commonly studied case in the fairness
literature, and exploring the application of FlipTest to uncovering
additional types of discrimination are both promising directions.
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